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Intro

• Much on restoring Zostera beds known on east coast.  Recently being applied to 
west coast though new efforts (NOAA/BCDC/CALTRANS) 

• Assumtion:  restoring structure = restoring community = spp. 
Relationships/functions—benefits of grass community.

• Can’t evaluate success of restoration if we don’t know what processes/spp. 
Relationships occur—specific benefits to look for. (e.g. large sterile grass beds do not 
perform desired function/give desired benefit).

• Numerous levels to look at:  infauna, epiphauna, nitrogen/carbon cycles, fish 
(residents/recruits density/diversity/interactions).

• Eelgrass has intrinsic and economic value.  Intrinsic-endemic spp. in native habitats-
complexity-stability-etc.  Economic value:  Rockfish, lingcod, cabezon, dungeness, 
herring, perch.

• NSF funds research for intrinsic/scientific values.

• Resource agencies fund research for economic value.

• Look at economically important spp. (maximize value = intrinsic + economic)

– Rockfish, lingcod, bocaccio recruits.

– Little known about early life stages in eelgrass beds.

– Look at timing of settlement, trophic interactions, ontogeny of these spp.



1. Highly exploited (yokalvich data?)
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Why Groundfish?

2. Increases in exploitation?

Cabezon



• Larvae

– Planktonic/Pelagic

– Feed on zooplankton

• Juveniles

– Demersal or pelagic

– Near shore kelp, grass, or 

rocky habitat (bays)

• Adults

– Offshore or inshore

– Demersal or pelagic

– Size generally increases 

with depth (Heincke’s Law)

Life-History of Nearshore 

Scorpaeniform Fishes

Copper Rockfish (from www.fishbase.com)
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Juvenile Groundfish Diet Study

S. melanops juveniles

Common invertebrate prey items 

(e.g. worms, amphipods, 

shrimps, isopods, zooplankton, 

etc.)
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Juvenile Groundfish Diet Study

N =  

S. melanops
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Juvenile Groundfish Diet Study

N =  

S. caurinus
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Juvenile Groundfish Diet Study

N = 13 

S. marmoratus
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Juvenile Groundfish Diet Study

O. elongatus

N = 24
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Juvenile Groundfish Diet Study

N = 28

S. paucispinus



Stable Isotope Refresher

 Tissue - dried, ground - analyzed in inductively-coupled plasma 

mass spectrometer (ICPMS Lab; UC Davis)

 Ratios of stable isotopes of nitrogen (N15/14) and carbon (C13/12) are 

measured and reported as dN15 and dC13 values.

 dN15 reflects trophic position; dC13 values reflect source of primary 

production.
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Isotope Variability

5 10 15 20 25 30 35 40 45 50 55 60

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

-24.2

-24.1

-24.0

-23.9

-23.8

-23.7

-23.6

d
N

1
5

 (
p

p
t)

Test No.

 AirN

d
C

1
3

 (
p

p
t)

 BelmeniteC

Machine Standards

-20

-19

-18

-17

-16

-15

-14

-13

 1
a

6

1
 b

6

 1
c
6

1
 d

6

1
e

6

1
 f

6

1
 h

6

 2
a

6

 2
b
6

 2
c
6

2
d

6

2
E

6

2
 f

6

 2
g
6

 2
h
6

4
 A

6

4
B

6

 4
C

6

 4
D

6

4
E

6

 4
F

6

4
 G

6

 4
H

6

 5
A

6

 5
B

6

 5
C

6

9

10

11

12

13

 C

Sample
d
C

1
3

 (
p

p
t)

 N

d
N

1
5

 (
p

p
t)

Tui Chub Muscle

Machine Malfunction

Sample Isotope Mean STDEV

Machine Standard N (air) 1.33 0.14

C (Belmenite) -23.83 0.08

Tui Chub Standard N (muscle) 10.86 0.41

C (muscle) -18.43 0.36

Replicate Error N (var) 0.28 0.45

C (var) 0.12 0.14



dN15 

(ppt)

dC13 (ppt)

Trophic Sub-structure of Bodega Harbor Eelgrass



Fish

Crustaceans

Plants

dN15 

(ppt)

dC13 (ppt)

Trophic Sub-structure of Bodega Harbor Eelgrass



Fish

Crustaceans

Plants
1 Trophic

Level

dN15 

(ppt)

dC13 (ppt)

Trophic Sub-structure of Bodega Harbor Eelgrass



1 Trophic

Level

dN15 

(ppt)

dC13 (ppt)

Pelagic isotope data 

from Jarman et al.

Environmental Sciences 

and Technology, 1996

Trophic Sub-structure of Bodega Harbor Eelgrass



Pelagic (POM)
Macrophytes

Zostera
dN15 

(ppt)

dC13 (ppt)

Trophic Sub-structure of Bodega Harbor Eelgrass



Pelagic (POM)
Macrophytes

Zostera
dN15 

(ppt)

dC13 (ppt)

Trophic Sub-structure of Bodega Harbor Eelgrass



Post-Settlement Ontogenetic 

Heavy Isotope Enrichment
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Isotopes vs. Gut Contents vs. Size



Implications

• Herzka used isotopes to show time of settling (Hobbs and Julia showed we 
can validate with otolith settlement check).

• Maintaining mechanisms more important than maintaining numbers (can’t 
account for stochasticity, but can maintain quality habitat for good 
recruitment years).

• Eelgrass beds with low productivity (lower fish growth) = slower rate of 
heavy isotopic enrichment.

• Eelgrass beds with anthro. nutrients may have faster rate of isotopic 
enrichment.

• Significance of micro-scale niche partitioning—radiation of sebastes?

• Eelgrass restorations. . .what is healthy?  What is the target?  
(Caltrans/BCDC/NOAA fisheries)

• Quality of eelgrass as nursury habitat for one spp. may be HIGHLY 
compromised by good/poor recruitment years of other spp due to complex 
relationships (intraguild predation:  holt/Gary Polis).



Future

• Otoliths:  compare growth rates of individuals settling in/out harbor.

• Otoliths:  microchem-local recruitment?

• Eelgrass:  spatial patterns/fish patterns (density/annual-perennial 

beds)/genetics

• More spp. (residents-stickleback/pipefish/


