Trophic Relationships of Newly
Settled Groundfish In




Intro

Much on restoring Zostera beds known on east coast. Recently being applied to
west coast though new efforts (NOAA/BCDC/CALTRANS)

Assumtion: restoring structure = restoring community = spp.
Relationships/functions—benefits of grass community.

Can’t evaluate success of restoration if we don’t know what processes/spp.
Relationships occur—specific benefits to look for. (e.g. large sterile grass beds do not
perform desired function/give desired benefit).

Numerous levels to look at: infauna, epiphauna, nitrogen/carbon cycles, fish
(residents/recruits density/diversity/interactions).

Eelgrass has intrinsic and economic value. Intrinsic-endemic spp. in native habitats-
complexity-stability-etc. Economic value: Rockfish, lingcod, cabezon, dungeness,
herring, perch.

NSF funds research for intrinsic/scientific values.

Resource agencies fund research for economic value.

Look at economically important spp. (maximize value = intrinsic + economic)
— Rockfish, lingcod, bocaccio recruits.
— Little known about early life stages in eelgrass beds.
— Look at timing of settlement, trophic interactions, ontogeny of these spp.
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Why Groundfish?
1. Highly exploited (yokalvich data?)
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Why Groundfish?

2. Increases in exploitation?
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Life-History of Nearshore
Scorpaeniform Fishes

A e |Larvae
T _____\\\‘1:___:_____\\ /

— Planktonic/Pelagic
— Feed on zooplankton

Juveniles «<——— SETTLEMENT

— Demersal or pelagic

— Near shore kelp, grass, or
rocky habitat (bays)

Adults

— Offshore or inshore

— Demersal or pelagic

— Size generally increases
with depth (Heincke's Law)

36.0 mm SL

Copper Rockfish (from www.fishbase.com)






Juvenile Groundfish Diet Study

Common invertebrate prey items
(e.g. worms, amphipods,
shrimps, isopods, zooplankton,
etc.)

S. melanops juveniles



Juvenile Groundfish Diet Study
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Juvenile Groundfish Diet Study
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Juvenile Groundfish Diet Study
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Juvenile Groundfish Diet Study
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Juvenile Groundfish Diet Study
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Stable Isotope Refresher

v' Tissue - dried, ground - analyzed in inductively-coupled plasma
mass spectrometer (ICPMS Lab; UC Davis)

v Ratios of stable isotopes of nitrogen (N1°14) and carbon (C1312) are
measured and reported as 6N1° and 8C*3 values.

v' 8N1° reflects trophic position; 8C*3 values reflect source of primary
production.
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|Isotope Variability
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Trophic Sub-structure of Bodega Harbor Eelgrass
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Trophic Sub-structure of Bodega Harbor Eelgrass

SC13 (ppt)

Fish
Crustaceans
Plants
-20 —1IE| —1IE —1IT —1IE —1I5 —1I4 —1I3 —1I2 —1I1 —1IEI :El ] T




SN15
(Ppt)

17

16 4

14 4

14

13 4

12 4

11

10 4

Trophic Sub-structure of Bodega Harbor Eelgrass

SC13 (ppt)

Fish
Crustaceans
Plants
-20 —1IE| —1IE —1IT —1IE —1I5 —1I4 —1I3 —1I2 —1I1 —1IEI :El ] T

1 Trophic
Level



Trophic Sub-structure of Bodega Harbor Eelgrass
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Trophic Sub-structure of Bodega Harbor Eelgrass
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Post-Settlement Ontogenetic
Heavy Isotope Enrichment
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Isotopes vs. Gut Contents vs. Size



Implications

Herzka used isotopes to show time of settling (Hobbs and Julia showed we
can validate with otolith settlement check).

Maintaining mechanisms more important than maintaining numbers (can’t
account for stochasticity, but can maintain quality habitat for good
recruitment years).

Eelgrass beds with low productivity (lower fish growth) = slower rate of
heavy isotopic enrichment.

Eelgrass beds with anthro. nutrients may have faster rate of isotopic
enrichment.

Significance of micro-scale niche partitioning—radiation of sebastes?

Eelgrass restorations. . .what is healthy? What is the target?
(Caltrans/BCDC/NOAA fisheries)

Quality of eelgrass as nursury habitat for one spp. may be HIGHLY
compromised by good/poor recruitment years of other spp due to complex
relationships (intraguild predation: holt/Gary Polis).



Future

Otoliths: compare growth rates of individuals settling in/out harbor.
Otoliths: microchem-local recruitment?

Eelgrass: spatial patterns/fish patterns (density/annual-perennial
beds)/genetics

More spp. (residents-stickleback/pipefish/



